Представлен конспект одного из занятий модуля "Площади фигур". Цель занятия-обобщить и систематизировать знания по теме, закрепить навыки вычисления площади треугольника. На занятии используется не только индивидуальная и парная, но и групповая работа. В результате решения предложенных задач обучающиеся должны научиться использовать приобретенные знания и умения в практической деятельности и повседневной жизни для решения практических задач, связанных с нахождением геометрических величин
Учитель математики Чернова Ирина Римовна,
МБОУ сош №5 г Бугульма, Республика Татарстан
Конспект занятия элективного курса по математике в 9 классе
«Площадь треугольника»
Цель занятия: создать условия для развития умений вычислять площади фигур, применяя изученные
свойства и формулы.
Задачи:
Обучающие
закрепить навыки вычисления площади фигур по формулам;
способствовать формированию умения применять изученные свойства и формулы в типовой и
нестандартной ситуации
Развивающие
способствовать развитию мыслительной операции анализа, сравнения, обобщения
способствовать развитию коммуникативных качеств личности
Воспитательные
воспитание интереса к математике как учебному предмету через современные технологии преподавания;
содействовать воспитанию общей культуры, трудолюбия, активности, самостоятельности; воспитывать
толерантность и умение работать в парах и группах.
Учебник: Атанасян Л.С. Геометрия 7 – 9. Учебник для 7 – 9 классов средней школы. М.,
«Просвещение», 2010.
Тип занятиязакрепление знаний, умений и отработки навыков
Форма занятия–практикум
Формы работы парная, индивидуальная, групповая
Методы словесные, наглядные, практические.
Технологии уровневая дифференциация, здоровьесберегающие
Оборудование: мультимедийное оборудование, презентация, текстовые документы
Планируемые результаты:
В результате решения задач на вычисление площадей фигур обучающиеся должны:
знать: основные понятия и определения геометрических фигур и их элементов
уметь: пользоваться геометрическим языком для описания предметов окружающего мира; распознавать
геометрические фигуры; вычислять значения геометрических величин, площади; решать геометрические
задачи, опираясь на изученные свойства фигур;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для решения
практических задач, связанных с нахождением геометрических величин.
Структура и ход занятия
1. Организационный момент (1 минута).
Приветствие. Определение темы и целей занятия (записать в тетрадях число, классная работа, тему
занятия). Учитель знакомит с планом занятия. Девиз занятия: «Человек, вооруженный знаниями,
способен решить любые задачи».
2. Актуализация знаний (повторение теории с помощью теста)
Известно, что математикаэто гимнастика ума.Сейчас мы и займемся этой гимнастикой.
Перед вами тест. Выполните его за 7 минут.Вариант 1
1.Выберите верное утверждение:
а) площадь треугольника равна произведению его
основания на высоту;
б) площадь прямоугольного треугольника равна
половине произведения его катетов;
в) площадь треугольника равна половине
произведения двух его сторон на косинус угла между
ними.
2.Закончите фразу:
Площадь треугольника равна произведению:
а) его полупериметра на радиус вписанной в него
окружности;
б) его стороны накакуюлибо высоту;
в) двух его сторон
3. По формуле S= √р(р−а)(р−в)(р−с)
можно вычислить площадь:
а) параллелограмма;
б) треугольника;
в) прямоугольника.
4Площадь треугольника вычисляется по
формуле:
авс
4R ;
а+в
2
h ;
а) S=
б) S=
в) S=аh.
5. Выберите верное утверждение: квадрат
гипотенузы равен:
а)сумме его катетов;
б) половина произведения его катетов;
в)сумме квадратов катетов.
Вариант 2
1.Выберите верное утверждение:
а) площадь треугольника равна произведению его
периметра на радиус вписанной в него окружности
б) площадь прямоугольного треугольника равна
произведению его катетов;
в) площадь треугольника равна половине
произведения основания на высоту.
2.Закончите фразу:
Площадь прямоугольного треугольника равна
а) произведению двух его сторон на синус угла
между ними;
б)половине произведения катетов;
в) произведению основания на высоту.
3. По формуле S=
1
2
Рr можно вычислить
площадь:
а) трапеции;
б) треугольника;
в) ромба.
4. Площадь треугольника вычисляется по
формуле:
а) S= а2
б) S= √р(р−а)(р−в)(р−с);
в) S= πR2
;
5. Выберите верное утверждение: катет,
лежащий против угла в 30°, равен:
а) половине другого катета;
б) второму катету;
в) половине гипотенузы.
(меняются тестом с соседом по парте и проводят взаимопроверку, обсуждают ошибки, если они есть,
в парах, выбирают правильный ответ, затем проверяют работу по эталону, выставляют за каждый
правильны ответ по 1 баллу в лист самооценки).
1 вариант
1.б
2. а
3.б
4.а
5.в
Ключ к тесту
2
вариант
1.в
2. б
3.б
4.б
5.в
Подведем итог. Выпишем формулы площадей к рисункам на доске.
1.Площадь произвольного треугольника: S=
1
2 аh2. Площадь прямоугольного треугольника: S=
1
2 ab
3. Площадь треугольника через 2 стороны и синус угла между ними: S=
1
2 ab sinα
4. Площадь треугольника через радиус вписанной окружности: S=
5. Площадь треугольника через радиус описанной окружности:S=
6. Формула Герона: S= √р(р−а)(р−в)(р−с)
Вспомним теорему Пифагора.
Какой треугольник называется Египетским?
Рr
1
2
авс
4R
3. Решение задач по готовым чертежам.
(Записывают свои ответы в тетрадях, если необходимо, выполняют письменные вычисления, затем
заполняют лист самооценки)
1) Найдите площадь треугольника со стороной 11 и высотой, проведенной к ней, равной 4
2) Найдите площадь прямоугольного треугольника с острым углом 45° и катетом 4.
3) Найдите площадь треугольника со сторонами 9 и 8 см и углом между ними 30
4) Найдите площадь треугольника со сторонами 13, 14, 15
5) Найдите радиус описанной около треугольника окружности, если его стороны равны 5, 12, 13 см, а
его площадь 39
6) Периметр треугольника равен 12, а радиус вписанной окружности равен 1. Найдите площадь этого
треугольника
7) В треугольнике АВС АВ=9, АС=12, В=100°, С=50°. Найдите площадь этого треугольника
˂
˂
№8 №9 №10 №11 №12
13. Выполните самостоятельно рисунок и решите задачу: в треугольнике АВС высота, проведенная
к стороне АС= 9 , равна 4, а высота, проведенная к стороне ВС=6, равна 6. Найдите площадь
треугольника АВС.
Верные ответы к задачам по готовым чертежам
№1 №2 №3 №4 №5 №6 №7 №8 №9 №10 №11 №12 №13
22
18
7,5
27
36
84
8
5
15
да
5
6
6
4.Физкультминутка для глаз.
Учитель предлагает учащимся немного отвлечься от работы и выполнить физкультминутку для глаз
(слайд). Переводить взгляд с одного треугольника на другой согласно их номерам.5.Решение прикладных задач по группам
1 группа:
Найдите площадь лесного массива в га, изображенного на плане с квадратной сеткой 1х1 см в
масштабе 1:200
S=174 га
2 группа:
Требуется произвести настилку паркетного пола в игровом зале строящегося детского сада. Размер
пола 6х8 м. Паркетные плитки имеют форму прямоугольных треугольников размером 15х20 см.
Сколько ящиков такой плитки необходимо купить, если в одном ящике находится 40 плиток.
Ответ: 40 ящиков.
группа:
3Ответ: 108
4группа:
Основание садового домика квадрат со стороной 8 м. Крыша состоит из 4 равнобедренных
треугольников, периметры которых равны 18м. Найдите площадь крыши.
Ответ: 48
Капитан каждой группы защищает решение своей задачи. Затем учащиеся выставляют баллы в лист
самооценки: если задача решена верно, то 2 балла, если ход решения верный, но допущена
вычислительная ошибка, то 1 балла.
6.Самостоятельная работа
1 вариант
1) Сторона треугольника равна 6 см, а высота, проведенная к ней, в 2 раза больше стороны. Найдите его
площадь.
2) Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 8
и 10.
3)В треугольнике со сторонами 16 и 2 проведены высоты к этим сторонам. Высота, проведённая к
первой стороне, равна 1. Чему равна высота, проведённая ко второй стороне?
2 вариант
1) Найдите площадь прямоугольного треугольника, катеты которого равны 5 см и 8 см.
2) Стороны треугольника равны 6 см и 8 см, а угол между ними равен 300. Найдите его площадь.
3) В треугольнике со сторонами 2 и 4 проведены высоты к этим сторонам. Высота, проведённая к
первой стороне, равна 2. Чему равна высота, проведённая ко второй стороне?
Ответы к самостоятельной работе
1 вариант
36
24
8
Самопроверка по эталону, учащиеся выставляют баллы в лист самооценки.
2 вариант
20
12
1
7. Итог занятия
Мы повторили: теоретический материал по теме «Площадь треугольника»
Совершенствовали:навыки решения задач
Проверили:свои знания и умения по теме«Площадь треугольника»
8.Рефлексия
«Сегодня я узнал…»
«Мне было труднее всего…»
«Самым полезным для меня было…»
•
•
•
«Ум заключается не только в знании, но и в умении приложить знание на деле».
Аристотель.
Как вы понимаете эти слова? Смог ли ты лично приложить свои знания при решении задач?
ФИ обучающегося_______________________________________________________
Лист самооценивания
Теоретический
тест
1
2
3
4
Решение задач по готовым чертежам
5
1
2
3
4
5
6
7
8
9
1
0
1
1
12
13
Работа в
группе
13
Самостоятельная
работа
1
2
3