Современные технологии проектирования
1. Введение 3
2. Технологии проектирования 4
3. Программа GeODin 8
4. Программный комплекс Plaxis 11
5. Программа AutoCAD Civil 3D 13
6. Заключение 16
7. Список используемой литературы 17
Определяющими факторами успеха в промышленном производстве являются уменьшение времени выхода продукции на рынок, повышение качества, снижение ее стоимости. Практическая реализация этих требований требует модернизации проектно-технологических и производственных процессов как в рамках отдельных предприятий, так и в условиях «расширенного предприятия», объединяющего всех поставщиков, соисполнителей и участников проектирования и производства продукции. В настоящее время наиболее радикальным средством решения задач модернизации является внедрение интегрированных информационных технологий на базе использования современных средств вычислительной техники и сетевых решений. К числу наиболее эффективных технологий, дающих весомый выигрыш в короткие сроки, принадлежат системы автоматизированного проектирования, инженерного анализа и технологической подготовки (системы CAD/CAM/CAE), а также системы управления производственной информацией (системы PDM).
Первым, наиболее значительным результатом в области разработки программных средств САПР является создание интерактивных графических редакторов для работы с двумерными и трехмерными геометрическими объектами или, иными словами, систем автоматизированного черчения (CADD — Computer-Aided Design and Drafting). При глобальном рассмотрении все графические редакторы работают одинаково: для них определены элементарные геометрические объекты (примитивы), а также процедуры манипулирования с этими объектами (редактирование). Поэтому в таких редакторах реализованы упрощенные представления о процессе проектирования как о процессе создания геометрических объектов путем манипуляции с набором неких элементарных геометрических объектов — геометрических примитивов. Очевидно, что такие представления недостаточно точно отражают работу инженера-конструктора, не позволяют ему отличить ее от деятельности чертежника, которая полностью ограничивается рамками изготовления технической документации.
Специализация графических редакторов для САПР привела к появлению целого ряда утилит, одни из которых встраивались в ядро редактора (например, утилита образмеривания), а другие предполагалось применять как независимые сервисные программы (утилита параметрического проектирования и пр.). Это, безусловно, улучшило эффективность использования САПР, но ничего не изменило принципиально. В настоящее время развитие программных средств САПР идет в направлении решения довольно небольшого круга проблем, к которым в первую очередь относятся: проблема эффективности твердотельного моделирования, проблема параметризации, а также проблема ассоциативности и программного интерфейса.
Однако современное представление о процессе проектирования исходит из его «генетического» единства с процессом производства. С этой точки зрения проектирование является информационной моделью производства, а никак не процессом изготовления технической документации. Следует отметить, что ранее конструкторы не имели инструментов для проверки адекватности указанных процессов, поэтому и появилась специальность технолога, который, по сути дела, осуществляет «переформатирование» описания из форм, адекватных процессу проектирования, в форму, адекватную процессу производства. Но с появлением современных средств вычислительной техники стала возможна непосредственная передача информации от компьютеров к элементам производства (к таким, например, как станки с ЧПУ), хотя, как правило, необходимость изготовления технической документации сохраняется.
Первые шаги в организации «единого информационного пространства» были предприняты в 1980-х годах в оборонном комплексе США, где возникла необходимость в обеспечении оперативного обмена данными между заказчиком, производителем и потребителем вооружений, а также в сокращении бумажного документопотока. Первоначально данная концепция получила обозначение CALS (Computer Aided Logistic Support — компьютерная поддержка поставок) и охватывала в основном фазы производства и эксплуатации. В дальнейшем концепция CALS начала активно применяться в промышленности, строительстве, транспорте и других отраслях экономики, расширяясь и охватывая все этапы «жизненного цикла» продукта — от маркетинга до утилизации.
В настоящий момент CALS понимается как Continuous Acquisition and Life Cycle Support — непрерывная информационная поддержка жизненного цикла изделия. По своей сути CALS является глобальной стратегией повышения эффективности бизнес-процессов, выполняемых в ходе жизненного цикла изделия за счет информационной интеграции и преемственности информации, порождаемой на всех этапах жизненного цикла. Возможность совместного использования информации определяется применением компьютерных сетей и стандартизации форматов данных, обеспечивающей их корректную интерпретацию. Интегрированная модель продукта и обмен конструкторскими данными между проектировщиком и производителем является источником информации для расчета потребности в материалах, создания электронных справочников по эксплуатации продукта и т. д. Очевидно, что решение указанных проблем возможно только вследствие унификации способов представления, интерпретации и использования информации, которые реализованы в стандарте ISO 10303 STEP (Standard for the Exchange of Product). Модель изделия в соответствии с этим стандартом включает: геометрические данные, информацию о конфигурации изделия, данные об изменениях, согласованиях и утверждениях. Стандарт ISO 10303 STEP построен таким образом, что помимо базовых элементов (интегрированных ресурсов) в его состав входят так называемые прикладные протоколы, определяющие конкретную структуру информационной модели для различных предметных областей (автомобиле- и судостроение, строительство, электроника и т. п.). Стандартный способ представления конструкторско - технологических данных позволяет решать проблему обмена информацией между различными подразделениями предприятия, а также участниками кооперации, оснащенными разнородными системами проектирования. В рамках технологии CALS развиваются современные технологии управления производственной информацией, часто называемые PDM-сис - темами (Product Data Management). Они следят за большими, постоянно обновляющимися массивами данных и инженерно-технической информации. В отличие от баз данных, PDM-системы интегрируют информацию любых форматов и типов, поступающую от различных источников, предоставляя ее пользователям в структурированном виде, привязанном к особенностям современного промышленного производства. Системы PDM отличаются также и от интегрированных систем офисного документооборота, поскольку текстовые документы являются далеко не самыми «нужными» на производстве (куда важнее геометрические модели, данные для функционирования автоматических линий, станков с ЧПУ и т. п.). Системы PDM обобщают такие широко известные технологии, как управление инженерными данными (Engineering Data Management — EDM), управление документами, управление информацией об изделии (Product Information Management — PIM), управление техническими данными (Technical Data Management — TDM), управление технической информацией (Technical Information Management — TIM), управление изображениями и пр.
Иначе говоря, любая информация, необходимая на том или ином этапе жизненного цикла изделия, может управляться системой PDM, которая предоставляет корректные данные всем пользователям и всем промышленным информационным системам. Наряду с данными, PDM управляет и проектом — процессом разработки изделия, контролируя собственно информацию об изделии, о состоянии объектов данных, об утверждении вносимых изменений, осуществляя авторизацию и другие операции, которые влияют на данные об изделии и режимы доступа к ним каждого конкретного пользователя.
Системы PDM играют роль связующего звена между этапом инженерноконструкторской подготовки нового изделия и системами MRP
(Manufacturing Resource Planning) или, другими словами, разного рода АСУ, решающими задачи автоматизации управления финансами, складским хозяйством, снабжением и сбытом, а также техническим обслуживанием. О важности такого рода систем свидетельствует хотя бы такой факт, что только 25 % рабочего времени персонала компании, начиная от проектировщика и кончая руководителем проекта, тратится на собственно творческую работу, а остальное — на поиск информации и стыковку потоков данных, поступающих от разных подразделений. Часто оказывается, что проще заново разработать деталь, чем найти информацию, подготовленную некоторое время назад.
Место систем PDM в общей производственной цепочке показано на рис. 1.1. Они занимают промежуточное положение между системами MPR и системами CAD/CAM/CAE, которые в русскоязычной литературе называют одним термином — интегрированные САПР. В англоязычной литературе под указанными терминами понимают следующее:
CAD (Computer-Aided Design) — общий термин для обозначения всех аспектов проектирования с использованием средств вычислительной техники; обычно охватывает создание геометрических моделей изделия (твердотельных, трехмерных, составных), а также генерацию чертежей изделия и их сопровождений;
САМ (Computer-Aided Manufacturing) — общий термин для обозначения программных систем подготовки информации для станков с ЧПУ; традиционно исходными данными для таких систем были геометрические модели деталей, получаемые из систем CAD;
CAE (Computer-Aided Engineering) — общий термин для обозначения информационного обеспечения автоматизированного анализа проекта (прочностные расчеты, коллизии кинематики и т. п.) или оптимизации производственных возможностей.
Главное направление развития современных САПР— повышение их интеллектуальных функций, т. е. способности «понимать» намерения конструкторов. В простейшем случае в системе запоминается лишь «история» или последовательность шагов, выполняемых проектировщиком.
Хранение
САШСАМ/САЕ информации MRP
Эскиз Аудит Финансы
Деталировка Контроль Склады
Спецификация Планирование Заказы
Сборочный чертеж ' процессов Реализация
PDM
Рис. 1.1. Взаимосвязь систем автоматизации
производственных процессов
Такие системы удобны при создании библиотек стандартных деталей и элементов, но для более сложных ситуаций требуется более «интеллектуальная» реализация пользовательского интерфейса. Поэтому в САПР начинает все шире использоваться объектная технология, в соответствии с которой САПР не должны работать с файлами, они должны обрабатывать объекты. Объекты образуют собой «целостности», включающие множественные непротиворечивые представления одной и той же «сущности». Например, деталь может представлять интерес для дизайнера с позиции эстетики формы, для инженера с позиции вычислительной сложности поверхности, для технолога с позиции применимости процесса штамповки для ее изготовления. Объект позволяет объединить подобные представления, а это открывает прямой путь к эффективной реализации идей С-технологии, т. е. параллельного проектирования и инжиниринга (concurrent design and engineering).
С-технология (конструкторско-технологическое проектирование) — это принципиально новый, интегрированный подход к проектированию. В ее основе лежит идея совмещенного проектирования изделия, а также процессов его изготовления и сопровождения, координируемых с помощью специально создаваемой для этой цели распределенной информационной среды. Подобная технология позволяет использовать проектные данные, начиная с самых ранних стадий проектирования, одновременно различными группами специалистов. Например, в трех главных конструкторских бюро компании Boeing действуют 220 групп «проектирование—производство», которые координируют параллельные разработки и состоят из специалистов таких разнообразных областей, как конструирование, технология материалов, производство и взаимодействие с клиентами. С-технология обеспечивает устранение известных недостатков последовательного проектирования, в частности, в случае, когда ошибки проекта изделия неожиданно обнаруживаются на последних его стадиях. Кроме того, появляется возможность легко и быстро вносить изменения в проект, причем таким образом, чтобы изменения не вызывали повторного проектирования созданных деталей и узлов. Сегодня «перепроектирование» продолжает оставаться существенной затратной компонентой любой разработки.
В заключение следует обратить внимание на интересные инициативы в области САПР, возникшие в Германии. Они связаны с проблемой роста несовместимости решений, предлагаемых многочисленными производителями информационной техники, включая и CAD/CAM/CAE - системы. Решение этих проблем стало настолько насущным, что поставлен вопрос о стандартизации систем CAD/CAM/CAE и информационной техники в целом. Концерн Daimler-Benz выступил с предложением под названием «Инициатива по передовой информационной технике», которое поддержали British Aerospace, FIAT, Renault, SAAB, Volkswagen и многие другие компании. Другой проект под названием CAD2000 объединил компании Audi, BMW, Mercedes-Benz, Porsche, Volkswagen. Эти проекты пытаются решить громадную по масштабам и сложности проблему поиска стандартных решений, способных удовлетворить огромное множество прикладных требований от проектирования до изготовления, а также управления информационными данными и библиотеками стандартных компонентов.
Эта программа предназначена для обработки данных инженерногеологических изысканий.
Инженерно–геологические изыскания — необходимый этап предпроектного исследования территории, предусмотренной для строительства. Результаты, полученные на этом этапе, во многом определяют технологию проектирования и строительства, а также дают необходимые данные по характеристикам грунтов, которые используются при расчетном обосновании.
Для решения задач обработки данных полевых и лабораторных исследований в рассматриваемой технологической цепочке предлагается использовать программу GeODin разработки немецкой компании FUGRO. Эта программа позволяет выполнить не только обработку данных с получением необходимых графиков и таблиц, но также создать Базу Геологических Данных территории, которая может пополняться, корректироваться и использоваться при проектировании других объектов. На рисунках представлены графические материалы, полученные в GeODin в результате обработки данных инженерно — геологических изысканий.
Рис. 2. Колонка
Рис.3. Отчет по статическому зондированию
Рис. 4. Геологический разрез
Данный комплекс предназначен для выполнения расчетного обоснования проекта, учитывающего совместную работу конструктивных элементов в сложной геотехнической системе «сооружение-основание» с учетом технологии строительства объекта и его дальнейшей эксплуатации. Для линейных сооружений прежде всего выполняются расчеты для обоснования проектов дорожных насыпей разного назначения. При выполнении этих расчетов инженер-проектировщик сталкивается с большим количеством сложных геотехнических задач. Эти задачи связаны с необходимостью учета в проекте ряда важных положений и факторов, к которым можно отнести:
• геологическое строение неоднородного грунтового основания, свойства грунтов и протекающие в них механические процессы;
• особые условия строительства, связанные с близостью существующих сооружений, наличием инженерных коммуникаций;
• технологии строительства земляного полотна и технологии искусственного улучшения грунтов основания;
• применение комбинированных строительных конструкций наземных и подземных сооружений и их взаимодействие с грунтом;
• статические и динамические условия нагружения при строительстве и эксплуатации сооружения.
Правильный выбор решения стоящих перед проектировщиками задач определяет высокие показатели экономичности и надежности возводимых и эксплуатируемых объектов транспортного строительства.
Одним из современных программных средств для геотехнических расчетов является программный комплекс Plaxis, представляющий собой пакет прикладных вычислительных программ для конечно-элементного анализа напряженно-деформированного состояния сложных геотехнических систем. Ниже приведены общие характеристики двух проектов насыпей автомобильных дорог и некоторые результаты их расчетного обоснования с помощью Plaxis.
Первый пример связан с проектом насыпи участка кольцевой автомобильной дороги (КАД) вокруг Санкт-Петербурга, выполненным ОАО «Трансмост».
Инженерные изыскания выявили достаточно сложное геологическое строение участка со слабыми обводненными техногенными отложениями переменной мощности. Для усиления слабого грунтового основания по рекомендации «СоюздорНИИ» в проекте было предложено использовать грунтоцементные сваи, объединенные гибким ростверком из двух слоев георешетки «TENAX». Насыпь имеет облицовочную стенку с металлическими оцинкованными анкерами из арматурной стали и армирована геосинтетическим материалом «Stabilenka».
В качестве второго примера рассмотрен проект реконструкции участка автодороги «Раздольное — Хасан» в Приморском крае, выполненный ОАО «Ленгипротранс».
Результаты инженерно-геологических изысканий выявили сложное неоднородное строение грунтового основания, представленного слабыми водонасыщенными грунтами разного вида и состояния. Обеспечение общей и местной устойчивости земляного полотна дороги на слабом основании предусматривает устройство пригрузочных берм и укладку в тело насыпи геотекстиля «Stabilenka» с послойной отсыпкой песчаного грунта полным фронтом, его уплотнением и выдержкой по времени.
Приведенные ниже рисунки иллюстрируют некоторые результаты расчетов, выполненных с учетом основных этапов строительного периода и протекающего за это время процесса консолидации слабых водонасыщенных грунтов основания.
Полученные результаты позволяют оценить совместную работу насыпи и основания, а также работу отдельных конструкционных элементов сооружения. Программный комплекс Plaxis давно занимает ведущее место среди специальных компьютерных программ и пользуется заслуженной популярностью у инженеров-проектировщиков в различных областях строительства, как надежный и простой в работе инструмент проектирования.
Рис. 4. Вертикальные перемещения системы "основание-насыпь" для автодороги "Раздольное - Хасан"
Программа предлагает технологию проектирования будущего. Использование этой программы позволяет решить задачи обработки данных геодезических изысканий (создания топоплана и цифровой модели рельефа) и проектирования транспортных объектов в единой информационной среде. Это практически исключает необходимость конвертации данных из одной программы в другую, что, как правило, связано с потерей времени, а иногда и самих данных. Но самое главное, в AutoCAD Civil 3D реализован подход проектирования дороги как единого трехмерного объекта. Необходимая рабочая документация — чертежи плана, профиля, сечений, ведомости и таблицы создаются на основе этой модели.
Все объекты Civil 3D имеют логические связи между собой. Структуру этих связей можно проследить на следующей схеме:
Благодаря этой взаимосвязи, 3D модель проектируемого объекта является динамической, т.е. при изменении исходных данных она целиком обновляется. Например, после внесения изменений в данные о поверхности земли, обновляется продольный профиль, перестраивается коридор, меняются поперечники, пересчитываются объемы и вносятся новые параметры в таблицы и чертежи. Таким образом, вся работа ведется только на основе актуальных данных.
Данная динамическая трехмерная модель одновременно с мощным функционалом программы позволяют заметно сократить время рассмотрения нескольких вариантов, разработки проектов любой сложности, внесения изменений.
С помощью программы AutoCAD Civil 3D можно разрабатывать проекты как строительства новых, так и реконструкции существующих автомобильных и железных дорог, транспортных развязок и многих других объектов инфраструктуры.
В качестве примера, можно рассмотреть несколько типовых проектов, выполненных в программе AutoCAD Civil 3D.
Первый проект — это двухуровневая транспортная развязка типа «клеверный лист». В рамках этого проекта была создана трехмерная модель всего объекта. Исходными данными служили точки поверхности, трассы пересекающихся главных дорог с продольными профилями и типовые поперечники.
Учитывая геометрию поперечников, первоначально были запроектированы круговые съезды, а затем — правосторонние. Отвод поперечного уклона на съездах с 20% до 40% обеспечивался с помощью дополнительного продольного профиля по внешней кромке съезда.
Модели всех съездов и главных дорог были созданы как отдельные коридоры, что позволило определить объемы земляных работ и материалов отдельно по каждому съезду и по каждой дороге.
Второй проект — это реконструкция городской улицы. В рамках этого проекта были решены задачи реконструкции проезжей части проспекта с прилегающими тротуарами и сохранением красных линий.
Динамическая модель, создаваемая в программе AutoCAD Civil 3D, позволила быстро определить оптимальную отметку оси проезжей части, учитывая положение водосборных колодцев и отметки красных линий.
Третий проект — это реконструкция перекрестка. Для обеспечения водоотвода были запроектированы продольные профили по лоткам, а непростая геометрия описана с помощью дополнительных трасс. Привязка модели коридора к дополнительным трассам и профилям позволила учесть все нюансы городского перекрестка.
Работа в
программе AutoCAD Civil 3D основана на работе с объектами и их типами, поэтому
задавая новый тип можно легко менять вид объектов на экране или в чертеже.
Такой подход дает возможность настройки на отраслевые стандарты оформления
чертежей.
На сегодняшний день задачу автоматизированного проектирования в той или иной степени решают большинство проектных организаций, при этом вопрос коллективной работы и управления проектами зачастую остается нерешенным. Для решения такой задачи компания Autodesk предлагает приложение Vault, которое входит в поставку AutoCAD Civil 3D. Программа Autodesk Vault позволяет организовывать проекты, доступные пользователям с определенными правами. Преимуществом этой системы является возможность добавления к проектам и дальнейшей работы абсолютно с любыми файлами. Любое изменение фиксируется в журнале проекта, что позволяет отследить, кто и когда редактировал данные и, в случае необходимости, восстановить любую версию файла.
Отличительной особенностью программы Autodesk Vault является интеграция ее в Civil 3D. Это позволяет получить доступ к проекту непосредственно из программы AutoCAD Civil 3D, а также создавать ссылки на отдельные объекты чертежа: поверхности, трассы, профили и др.
Современные условия эксплуатации объектов инфраструктуры предъявляют постоянно возрастающие требования к проектным работам как нового строительства, так ремонта и реконструкции. Соответствовать таким требованиям можно лишь при условии внедрения новых технологий проектирования и использования современного программного обеспечения:
GeODin для обработки данных инженерно-геологических изысканий; Plaxis для геотехнических расчетов; AutoCAD Civil 3D для проектирования.
1. Взятышев В.Ф. Методология проектирования в инновационном образовании//Инновационное образование и инженерное творчество. - М.
2. Пахомова Н.Ю. Метод учебного проекта в образовательном учреждении: Пособие для учителей и студентов педагогических вузов. - М.: АРКТИ.
3. Пахомова Н.Ю. Метод проектов. /Информатика и образование.
Международны специальный журнал: Технологическое образование.
4. Пахомова Н.Ю. Методика использования учебных проектов для изучения отдельной темы или крупного блока содержания. /Глобальные телекоммуникации в образовании" сб. докладов научно-практической конференции. М.
Интернет-Ресурсы:
• http://www.nipinfor.ru/publications/10065/
• https://msd.com.ua/kompyuternoe-proektirovanie-i-podgotovkaproizvodstva-svarnyx-konstrukcij/sovremennye-texnologiiproektirovaniya-i-graficheskogo-modelirovaniya-2/
© ООО «Знанио»
С вами с 2009 года.