Технологическая карта урока Действия с многочленами.doc
Графчикова Светлана Дмитриевна, учитель математики высшей категории г. Данилов Ярославской области
Технологическая карта урока
Учитель
Название предмета,
учебника и автора: Алгебра. 7 класс. Г.В. Дорофеев
Тема:
Повторение и обобщение темы «Действия с многочленами»
Предоставить возможность выявления и устранения пробелов по теме «Действия с многочленами» с
помощью листа самодиагностики
Дата: 19.02.2019
Действия с многочленами: сложение, вычитание, умножение одночлена на многочлен, умножение многочлена
на многочлен
Способствовать выявлению и раскрытию способностей учащихся; воспитывать навыки адекватной
самооценки работы; формировать волевые качества личности учащихся: терпеливость, выносливость,
доведение работы до конца.
Урок повторения и обобщения ЗУН
Планируемые результаты
Обучающийся отрабатывает навыки работы с многочленами, а именно:
преобразовывает алгебраические выражения, владеет приемами их упрощения;
представляет в стандартном виде многочлены;
складывает и вычитает многочлены;
умножает одночлен на многочлен;
умножает многочлен на многочлен;
решает уравнения с многочленами.
Обучающийся демонстрирует готовность и способность к саморазвитию и самообразованию;
демонстрирует готовность и способность осознанному выбору и построению дальнейшей
индивидуальной траектории получения знаний по теме урока на своем необходимом ему уровне.
Обучающийся демонстрирует ответственное отношение к учению.
Образовательные
цели:
Освоение
предметных знаний
Воспитательные
цели:
Тип урока
Предметные
результаты
Личностные
результаты
Метапредметные результаты
Коммуникативные
УДД:
Обучающийся:
организует учебное сотрудничество и совместную деятельность с учителем и сверстниками; работает индивидуально и в группе: формулирует, аргументирует и отстаивает свое мнение.
определяет свои действия, которые способствуют продуктивной коммуникации;
осознанно использует речевые средства в соответствии с задачей коммуникации;
излагает свое мнение, аргументируя его,
Обучающийся планирует и корректирует свою индивидуальную образовательную траекторию, а
именно:
анализирует существующие образовательные результаты;
определяет собственные пробелы в знаниях;
ставит цель деятельности на основе определенной проблемы и существующих возможностей;
определяет необходимые действие(я) в соответствии с учебной и познавательной задачей и
составляет алгоритм их выполнения;
выбирает из предложенных вариантов средства/ресурсы для решения задачи/достижения цели;
оценивает свою деятельность, аргументируя причины достижения или отсутствия планируемого
результата;
сверяет свои действия с целью;
осуществляют самоконтроль и взаимоконтроль в процессе достижения результата;
фиксирует и анализирует динамику собственных образовательных результатов (делает выводы о
качестве собственных знаний, необходимых для выполнения контрольной работы).
Регулятивные УДД:
использует и выбирает правила для решения заданий своего уровня,
определяет необходимые запросы и выбирает эффективные способы решения учебных задач;
Познавательные
УДД:
Использование ЭОР Флипчарт «Действия с многочленами», пульты для интерактивного голосования
Дидактические
материалы
Лист достижений, листы с заданиями по группам и уровням, карточки 1 уровня и 2 уровня для работы в
парах, варианты контрольной работы с критериями оценивания, образцы решения заданий 2 уровня № Этапы
1
урока
Формирова
ние
потребност
и
Деятельность учителя
Проверка
готовности к уроку.
Приветствие.
Психологический настрой на урок физминутка «Улыбка»
Вспомним слова из песни Владимира Шаинского «Улыбка»:
«...Поделись улыбкою своей, и она к тебе не раз ещё
вернётся...». Поприветствуйте своего соседа по парте
открытой, доброй улыбкой. Обращаясь к нему с улыбкой.
Поприветствуйте наших гостей на уроке улыбкой.
Улыбнулись? Значит, вы готовы к занятию.
Здравствуйте. Этот урок хочу начать словами французского
философа и математика Рене Декарта: «Математика учит
преодолевать трудности и исправлять собственные ошибки»
Какую тему мы изучаем?
Какие действия можно выполнять над многочленами и
одночленами?
Включите пульты и ответьте на вопросы
Оцени степень усвоения темы «Действия над
многочленами» (усвоил полностью, усвоил частично, не
усвоил)
Если бы тебе сейчас предложили написать контрольную
работу по теме «Действия с многочленами», ты бы ответил
(я готов и уверен в хорошем результате, у меня есть
сомнения, мне надо еще потренироваться, я не готов)
У вас на партах имеются листы достижений по теме
«Действия с многочленами». Внимательно прочитайте
2
Формирова
ние образа
желаемого
Ресурс Формируемые УУД
Стр №
1, 2, 3
Личностные УУД:
Показывают свое
поведение в
соответствии с
определенной
ситуацией,
демонстрирует
сформированность
ответственного
отношения к учению
Регулятивные УУД:
Фиксирует динамику
собственных
образовательных
результатов, делает
выводы о качестве
собственных знаний,
необходимых для
выполнения
контрольной работы
Деятельность
ученика
Включаются в
деловой ритм
урока
Отвечают на
вопросы
Многочлены и
одночлены
Сложение,
вычитание,
умножение,
приведение к
стандартному
виду
Отвечают на
вопросы с
помощью
пультов
Оценивают
степень
усвоения темы
Личностные УУД:
проявляют интерес к
содержанию таблицы результата
«Действия с
многочленами»
с помощью
листов
достижений и
высказывают
мнения об
итогах работы
на уроке
утверждения и отметьте знаком «+», если уверены на 100
процентов, «+», если есть сомнения, «» не уверены.
Поднимите руку те, у кого есть сомнения и неуверенность
хотя бы по одному из пунктов. По какому? Поднимите руку
те, кто готов устранить сомнения и пробелы в знаниях или
кто готов работать на улучшение знаний по теме «Действия
с многочленами». Что вы хотите видеть итогом вашей
работы на уроке?
Поднимите руку, кто готов писать контрольную работу?
(выдать текст контрольной работы для ознакомления и
принятия решения о дальнейших действиях (выполнение
контрольной работы или работа с классом). Если принимает
решение о написании контрольной работы, задать вопрос:
На какую отметку ты планируешь написать контрольную
работу? Познакомься с критериями отметки за контрольную
работу.
3
Формирова
ние
мотивации
Подумайте, для чего каждый из вас хочет устранить
пробелы в знаниях или улучшить знания по теме? Есть
желающие поделиться своими мыслями
Строят
высказывания
достижений,
осознавая неполноту
своих знаний;
демонстрирует
сформированность
ответственного
отношения к учению
Познавательные
УУД:
формулирует
информационный
запрос
Регулятивные УУД:
анализирует
соответствующие
образовательные
результаты,
определяет
собственные пробелы
в знаниях
Коммуникативные
УУД:
организует учебное
сотрудничество с
учителем и
сверстниками
Личностные УУД:
демонстрирует
готовность и
способность к
саморазвитию и
самообразованию на
основе мотивации к
обучению и познанию
Коммуникативные
УУД:
вступает в диалог, с
достаточной
полнотой и 4
Целеполага
ние
Открываем тетради, записываем число, классная работа,
тема урока «Действия с многочленами»
Поставьте и запишите в тетради каждый свою цель на
сегодняшний урок.
Спросить нескольких ребят.
Действительно, в математике, как и в спорте, чтобы
добиться высоких результатов, надо постоянно
тренироваться и отрабатывать навыки решения различных
видов заданий и от легкого уровня переходить к более
сложному.
Строят
высказывания,
формулируют
цель
точностью выражает
свои мысли.
Познавательные
УУД:
определяет
необходимые
запросы
Личностные УУД:
демонстрирует
готовность и
способность к
саморазвитию и
самообразованию на
основе мотивации к
обучению и познанию
Коммуникативные
УУД:
вступать в диалог, с
достаточной
полнотой и
точностью выражать
свои мысли.
Регулятивные УУД:
Ставит цель
деятельности на
основе определенной
проблемы и
сущуствующих
возможностей
Познавательные
УУД:
определяет
необходимые
запросы
5
Планирова
ние
На доске я предлагаю несколько пунктов действий.
Выберите нужные и важные для вас действия (шаги) для
реализации поставленной вами цели на сегодняшний урок.
На полях выпишите номера действий.
Строят
высказывания,
составляют
план
реализации
Стр. 4 Личностные УУД:
демонстрирует
готовность и
способность
осознанному выбору 1. Определить группу заданий для выявления пробелов и их
устранения
2. Повторить правила
3. Выполнить упражнения для закрепления навыков решения
по теме «Действия с многочленами»
4. Узнать чтото новое
5. Выполнить задания повышенного уровня сложности
своей цели
6
Выполнени
е действий
1. Работа в парах по карточкам (2 уровня).
1 уровень
1. Найди ошибку
Работают в
парах 4
человека, роль
в паре
Стр. 5,
6, 7, 8,
9, 10,
11
и построению
дальнейшей
индивидуальной
траектории
получения знаний по
теме урока на своем
необходимом ему
уровне.
Регулятивные УУД:
определяет
необходимые
действия в
соответствии с
учебной и
познавательной
задачей и составляет
план действий с
учетом конечного
результата; выбирает
из предложенных
вариантов средства
для достижения цели
Познавательные
УУД:
Выбирает
эффективные
способы решения
учебных задач
Коммуникативные
УУД:
Определяет свои
действия, которые
способствуют
продуктивной
коммуникации
Предметные УУД:
отрабатывает навыки
работы с
многочленами, а выбирают
самостоятельно
Отвечают на
вопросы с
помощью
пультов;
рассуждают,
отвечая на
вопросы
учителя
5х(х 5) = 5х2 25
(8 + 3х)(2х у) = 16х 8у + 6х + 3ху
2. Заполни пропуски
5х(2х2 х) = 10х3 …
(а 5)(11 в) = 11а – ав 55 + …
3. Найдите сумму и разность многочленов 6 + 3х и 5у 1
2 уровень
1. Найди ошибку
3х(х – 5у2) = 3х – 8ху2
(2а 5)(3 – 4а) = 6а + 8а2 15 + 20а
2. Решите уравнение
4(1,5х 3) – 5,5х = 10
3. Найдите значение выражения 5m(m 3) – (6m2 1) + (m +
4)(m 3) при m = 1/7
2. Фронтальная работа (актуализация знаний)
1. Среди данных выражений выберите одночлены,
записанные в стандартном виде:
(2а3)4; 3х2; а3 5в; 0,5х2; 10х5у + у2; 0,75х + 3у + 0,25х – у
Что значит одночлен стандартного вида?
2. Среди данных выражений выберите многочлены не
стандартного вида
(2а3)4; 3х2; а3 5в; 0,5х2; 10х5у + у2; 0,75х + 3у + 0,25х – у
Что значит многочлен стандартного вида? Что необходимо
сделать, чтобы многочлены были записаны в стандартном
виде?
3. Выберите выражения, противоположные многочлену а –в
а + в; в – а; а + в; а – в
4. Выберите выражения, равные многочлену х2 – 3х + 1
х2 3х 1; х2 + 3х 1; х2 + 3х 1; 1 + х2 – 3х
именно:
преобразовывает
алгебраические
выражения, владеет
приемами их
упрощения;
представляет в
стандартном виде
многочлены;
складывает и
вычитает
многочлены;
умножает одночлен
на многочлен;
умножает многочлен
на многочлен;
решает уравнения с
многочленами.
Регулятивные УУД:
Определяет
собственные пробелы
в знаниях; оценивает
свою деятельность,
аргументируя
причины достижения
и ли отсутствия
планируемого
результата;
осуществляет
и
самоконтроль
взаимоконтроль
в
процессе достижения
результата
Познавательные
УУД:
и
выбирает
использует правила
для решения заданий
своего
уровня; 5. Выполните действия
(х + 3у2) + (3у2 – 0,5 + х)
Какое действие, на чем основано сложение многочленов?
Как раскрыть скобки, перед которыми стоит «+»?
(2а + 13в) – (2а + 13в)
Какое действие, на чем основано вычитание многочленов?
Как раскрыть скобки, перед которыми стоит «»?
3х2(5х + 1)
Какое действие, на чем основано умножение одночлена на
многочлен?
Расскажите правило умножения одночлена на многочлен
(4m2 – 7m 1)(5m3)
(х 7)(х + 1)
Какое действие? Расскажите правило умножения
многочлена на многочлен
3. Работа по группам заданий
У вас на партах листы с заданиями. Определите, какая
группа заданий вызывает у вас наибольшие затруднения,
выберите и выполните задания этой группы в тетрадях.
1. Сложение и вычитание многочленов
3а2 – (5а – 7в + 9в2)
(2а в2) – (3а2 + 4в)
(5,2х у) + (3,2х – 4у)
(3а + в) – (в – 3а)
(2х2 – 3ху + 7) – (2х2 + 7ху 9)
2. Умножение одночлена на многочлен
5(а –в + 2с)
5х2(3х + 1)
7х3 (2х2 + 5)
Выполняют
действия,
отвечают на
вопросы
учителя,
повторяют
правила
Выбирают
группу заданий
и выполняют
задания в
тетради
с
и
выбирает
эффективные
способы решения
учебных задач
Коммуникативные
УУД:
организует учебное
сотрудничество и
совместную
деятельность
учителем
сверстниками;
работает
индивидуально и в
паре;
осознанно
использует речевые
в
средства
соответствии
с
задачей
коммуникации для
регуляции
своей
деятельности
Личностные УУД:
демонстрирует
уважительное
отношение к труду 10а3в2(2а2в – в4)
(4в3 – 3в2 + 7в 10)(2в2)
3. Умножение многочлена на многочлен
(а + 5)(а 4)
(2х 5)(2х + 5)
(2х 5)(2х 5)
(х2 + 1)(4 – х2)
(4а3в – 7 а2в2)(а в)
Сравните свои решения с образцом на доске и исправьте
ошибки, если есть. Установите причину допущенной ошибки
Поднимите руку, кто еще нуждается в решении и отработке
заданий 1 уровня и кому нужна помощь и консультация
учителя.
Поднимите руку, кто готов перейти на задания 2 уровня.
У доски работают 2 человека 1 уровня и проверяют решения
друг друга.
1 уровень
1. Найдите сумму многочленов 5а2 – 3а и 2а2 + 2а + 1
2. Найдите разность многочленов 4х2 – 2х +3 и 2х2 + 3х
3. Упростите выражение 5у(у4) – 8у(у6)
4. Выполните умножение (в2 1)(в2 + 2)
5. Решите уравнение 0,6х = 0,3 – 3(х + 2,5)
У доски работает 1 человек 2 уровня, представляет решение
любого задания и проводит самооценку по алгоритму:
Проверяют
свои решения с
образцом,
находят
ошибки,
исправляют их
Выбирают
уровень
заданий.
Те, кто 1
уровень,
работают с
учителем, кто 2
уровень
самостоятельно
2 человека 1
уровня
работают у
доски и
проверяют друг
друга, 1
человек 2
уровня
работает над
любым
заданием на его
выбор у доски
и проводит самооценку по
алгоритму
1. Что нужно было сделать в задании?
2. Найдено решение или ответ?
3. Выполнил самостоятельно или с помощью?
4. Выполнил без ошибок или с ошибкой?
5. Какой уровень задания?
6. Какое умение проверяется при выполнении задания?
7. Оцени свой уровень успешности и выполненную работу.
2 уровень
1. Решите уравнение
2. Найдите значение выражения (2х2 + х + 1)(х 2) + 2х2 (2
х) – (х2 – 1) при а = 0,5; а = .
3. Докажите, что при любом натуральном значении n
значение выражения делится на 5 нацело: n(n + 14) – (n – 1)
(n + 5)
4. Расставьте в выражении 2х – 3х 5 скобки так, чтобы
получилось: а) 15 – х б) 4х – 10 в) 5 – х г) 2х2 – 13х + 15
5. Запишите в клетки каждого квадрата такие выражения,
чтобы их сумма в каждом столбце, каждой строке и каждой
диагонали была равна 0.
0
х у
3у
2х – у
Ребятам, решающим задания 2 уровня, выдать решения для
проверки
4. Новые знания
Математика таит в себе много интересного и полезного.
Слушают
новую
информацию,
решают задания
с применением 7
Анализ
результата
Например, запись авс означает число, в котором а сотен, в
десятков и с единиц. Это число можно представить в виде
многочлена: авс = 100а + 10в + с. Представьте в виде
многочлена число mnpq =
Используя этот факт, докажите, что четырехзначное число,
записанное одинаковыми цифрами, делится на 11.
этой
информации.
Высказывают
мнения по
решению задач
Стр.
12, 13
Работают с
таблицей
достижений
Оценивают
степень
достижения
цели,
выборочно
высказываются
делятся
мнением
Осмысливают
взаимосвязи д/з
с материалом,
записывают
домашнее
задание
Вернемся к таблице достижений. Посмотрите, произошли у
когото изменения в знаниях. У кого произошли улучшения,
поднимите руку. У кого осталось без изменений, поднимите
руку.
Включите пульты и ответьте на вопрос:
Если бы тебе сейчас предложили написать контрольную
работу по теме «Действия с многочленами», ты бы ответил
(я готов и уверен в хорошем результате, у меня есть
сомнения, мне надо еще потренироваться, я не готов)
Прочитайте цель, которую вы поставили перед собой в
начале урока. Предлагает оценить факт достижения цели
урока: поднимите руку, кто считает, что цель достигнута.
Почему?
Ребята, многочлен в переводе с греческого обозначает
многочисленный. Т.е. другое его название полином. На
каждую букву этого слова подберите прилагательное или
глагол, отвечающие на вопросы: Каким был для вас урок?
Что вы делали на уроке?
Вы хорошо сегодня поработали, для закрепления навыков по
теме «Действия с многочленами» предлагаю выполнить
домашнее задание
Обязательное № 792(а), 796(в), 797(б).
Регулятивные УУД:
Анализирует
существующие
образовательные
результаты; сверяет
свои действия с
целью; фиксирует и
анализирует
динамику
собственных
образовательных
результатов (делает
выводы о качестве
собственных знаний,
необходимых для
выполнения
контрольной работы)
Познавательные
УУД: определяет
необходимые
запросы и выбирает
эффективные
способы решения
учебных задач
Коммуникативные
УУД:
Организует
совместную
деятельность и
сотрудничество с сложение и вычитание многочленов – стр. 223 № 2, № 3
умножение одночлена на многочлен – стр. 223 № 4, № 5
умножение многочлена на многочлен – стр. 223 № 6
Дополнительное – докажите, что сумма чисел ав и ва кратна
сумме а и в
и
учителем и
сверстниками;
излагает свое мнение,
аргументируя его
Личностные УУД:
Демонстрирует
готовность
способность
осознанному выбору
и
построению
дальнейшей
индивидуальной
траектории
получения знаний на
своем необходимом
ему
уровне;
демонстрирует
сформированность
ответственного
отношения к учению,
уважительного
отношения к труду
1. Определить группу заданий для
выявления пробелов и их устранения
2. Повторить правила 3. Выполнить упражнения для
закрепления навыков решения по
теме «Действия с многочленами»
4. Узнать чтото новое
5. Выполнить задания повышенного
уровня сложно 1. Сложение и вычитание
многочленов
3а2 – (5а – 7в + 9в2)
(2а в2) – (3а2 + 4в)
(5,2х у) + (3,2х – 4у)
(3а + в) – (в – 3а)
(2х2 – 3ху + 7) – (2х2 + 7ху 9)
1 уровень
1. Найдите сумму многочленов
5а2 – 3а и 2а2 + 2а + 1
2. Найдите разность многочленов
4х2 – 2х +3 и 2х2 + 3х
3. Упростите выражение
5у(у4) – 8у(у6)
4. Выполните умножение
(в2 1)(в2 + 2)
5. Решите уравнение
0,6х = 0,3 – 3(х + 2,5)
2. Умножение одночлена на
многочлен
5(а –в + 2с)
5х2(3х + 1)
7х3 (2х2 + 5)
10а3в2(2а2в – в4)
(4в3 – 3в2 + 7в 10)(2в2)
2 уровень
1. Решите уравнение
3. Умножение многочлена на
многочлен
(а + 5)(а 4)
(2х 5)(2х + 5)
(2х 5)(2х 5)
(х2 + 1)(4 – х2)
(4а3в – 7 а2в2)(а в)
2. Найдите значение выражения
(2х2 + х + 1)(х 2) + 2х2 (2 х) – (х2 – 1) при а = 0,5; а = .
3. Докажите, что при любом натуральном значении n значение
выражения делится на 5 нацело: n(n + 14) – (n – 1)(n + 5)
4. Расставьте в выражении 2х – 3х – 5 скобки так, чтобы получилось:
а) 15 – х б) 4х – 10
в) 5 – х г) 2х2 – 13х + 15
5. Запишите в клетки каждого квадрата такие выражения, чтобы их
сумма в каждом столбце, каждой строке и каждой диагонали была
равна 0. 0
х у
3у
2х – у
1. Сложение и вычитание
многочленов
3а2 – (5а – 7в + 9в2)
(2а в2) – (3а2 + 4в)
(5,2х у) + (3,2х – 4у)
(3а + в) – (в – 3а)
(2х2 – 3ху + 7) – (2х2 + 7ху 9)
1 уровень
1. Найдите сумму многочленов
5а2 – 3а и 2а2 + 2а + 1
2. Найдите разность многочленов
4х2 – 2х +3 и 2х2 + 3х
3. Упростите выражение
5у(у4) – 8у(у6)
4. Выполните умножение
(в2 1)(в2 + 2)
5. Решите уравнение
0,6х = 0,3 – 3(х + 2,5)
2. Умножение одночлена на
многочлен
5(а –в + 2с)
5х2(3х + 1)
7х3 (2х2 + 5)
10а3в2(2а2в – в4)
(4в3 – 3в2 + 7в 10)(2в2)
2 уровень
1. Решите уравнение
3. Умножение многочлена на
многочлен
(а + 5)(а 4)
(2х 5)(2х + 5)
(2х 5)(2х 5)
(х2 + 1)(4 – х2)
(4а3в – 7 а2в2)(а в)
2. Найдите значение выражения
(2х2 + х + 1)(х 2) + 2х2 (2 х) – (х2 – 1) при а = 0,5; а = .
3. Докажите, что при любом натуральном значении n значение
выражения делится на 5 нацело: n(n + 14) – (n – 1)(n + 5)
4. Расставьте в выражении 2х – 3х – 5 скобки так, чтобы получилось:
а) 15 – х б) 4х – 10
в) 5 – х г) 2х2 – 13х + 15
5. Запишите в клетки каждого квадрата такие выражения, чтобы их
сумма в каждом столбце, каждой строке и каждой диагонали была
равна 0. 0 х у
3у
2х – у
Домашнее задание
Обязательное № 792(а), 796(в), 797(б).
сложение и вычитание многочленов – стр. 223 № 2, № 3
умножение одночлена на многочлен – стр. 223 № 4, № 5
умножение многочлена на многочлен – стр. 223 № 6
Дополнительное – докажите, что сумма чисел ав и ва кратна сумме а и в
Домашнее задание
Обязательное № 792(а), 796(в), 797(б).
сложение и вычитание многочленов – стр. 223 № 2, № 3
умножение одночлена на многочлен – стр. 223 № 4, № 5
умножение многочлена на многочлен – стр. 223 № 6
Дополнительное – докажите, что сумма чисел ав и ва кратна сумме а и в
Домашнее задание
Обязательное № 792(а), 796(в), 797(б).
сложение и вычитание многочленов – стр. 223 № 2, № 3
умножение одночлена на многочлен – стр. 223 № 4, № 5
умножение многочлена на многочлен – стр. 223 № 6
Дополнительное – докажите, что сумма чисел ав и ва кратна сумме а и в 1. Сложение и вычитание многочленов
3а2(5а7в+9в2) = 3а2+5а+7в9в2
(2а в2) (3а2+4в) = 2а в2 + 3а2 4в
(5,2х у) + (3,2х 4у) = 5,2х + у +3,2х 4у = 2х 3у
(3а+в) (в 3а) = 3а+в в+3а = 0
(2х2 3у+7) (2х2+7ху9) = 2х2+3у7+2х2 7ху+9=
= 3у7ху+2
2. Умножение одночлена на многочлен
5(а в + 2с) = 5а + 5в 10с
5х2(3х+1) = 15х3 + 5х2
7х3(2х2+5) = 14х5 35х3
10а3в2(2а2в в4) = 20а5в3 10а3в6
(4в3 3в2 + 7в 10)(2в2) = 8в5 + 6в4 14в3 +20в2
3. Умножение многочлена на многочлен
(а + 5)(а 4) = а2 – 4а + 5а – 20 = а2 + а – 20
(2х 5)(2х + 5) = 4х2 + 10х – 10х – 25 = 4х2 25
(2х 5)(2х 5) = 4х2 10х – 10х + 25 = 4х2 – 20х + 25
(х2 + 1)(4 – х2) = 4х2 – х4 + 4 – х2 = 3х2 – х4 + 4
(4а3в – 7а2в2)(а в) = 4а4в – 4а3в2 – 7а3в2 + 7а2в3
1. Сложение и вычитание многочленов
3а2(5а7в+9в2) = 3а2+5а+7в9в2
(2а в2) (3а2+4в) = 2а в2 + 3а2 4в
(5,2х у) + (3,2х 4у) = 5,2х + у +3,2х 4у = 2х 3у
(3а+в) (в 3а) = 3а+в в+3а = 0
(2х2 3у+7) (2х2+7ху9) = 2х2+3у7+2х2 7ху+9=
= 3у7ху+2
2. Умножение одночлена на многочлен
5(а в + 2с) = 5а + 5в 10с
5х2(3х+1) = 15х3 + 5х2
7х3(2х2+5) = 14х5 35х3
10а3в2(2а2в в4) = 20а5в3 10а3в6
(4в3 3в2 + 7в 10)(2в2) = 8в5 + 6в4 14в3 +20в2
3. Умножение многочлена на многочлен
(а + 5)(а 4) = а2 – 4а + 5а – 20 = а2 + а – 20
(2х 5)(2х + 5) = 4х2 + 10х – 10х – 25 = 4х2 25
(2х 5)(2х 5) = 4х2 10х – 10х + 25 = 4х2 – 20х + 25
(х2 + 1)(4 – х2) = 4х2 – х4 + 4 – х2 = 3х2 – х4 + 4
(4а3в – 7а2в2)(а в) = 4а4в – 4а3в2 – 7а3в2 + 7а2в3
1. Сложение и вычитание многочленов
3а2(5а7в+9в2) = 3а2+5а+7в9в2
(2а в2) (3а2+4в) = 2а в2 + 3а2 4в
(5,2х у) + (3,2х 4у) = 5,2х + у +3,2х 4у = 2х 3у
(3а+в) (в 3а) = 3а+в в+3а = 0
(2х2 3у+7) (2х2+7ху9) = 2х2+3у7+2х2 7ху+9=
= 3у7ху+2
2. Умножение одночлена на многочлен
5(а в + 2с) = 5а + 5в 10с
5х2(3х+1) = 15х3 + 5х2
7х3(2х2+5) = 14х5 35х3
10а3в2(2а2в в4) = 20а5в3 10а3в6
1. Сложение и вычитание многочленов
3а2(5а7в+9в2) = 3а2+5а+7в9в2
(2а в2) (3а2+4в) = 2а в2 + 3а2 4в
(5,2х у) + (3,2х 4у) = 5,2х + у +3,2х 4у = 2х 3у
(3а+в) (в 3а) = 3а+в в+3а = 0
(2х2 3у+7) (2х2+7ху9) = 2х2+3у7+2х2 7ху+9=
= 3у7ху+2
2. Умножение одночлена на многочлен
5(а в + 2с) = 5а + 5в 10с
5х2(3х+1) = 15х3 + 5х2
7х3(2х2+5) = 14х5 35х3
10а3в2(2а2в в4) = 20а5в3 10а3в6
(4в3 3в2 + 7в 10)(2в2) = 8в5 + 6в4 14в3 +20в2
3. Умножение многочлена на многочлен
(а + 5)(а 4) = а2 – 4а + 5а – 20 = а2 + а – 20
(2х 5)(2х + 5) = 4х2 + 10х – 10х – 25 = 4х2 25
(2х 5)(2х 5) = 4х2 10х – 10х + 25 = 4х2 – 20х + 25
(х2 + 1)(4 – х2) = 4х2 – х4 + 4 – х2 = 3х2 – х4 + 4
(4а3в – 7а2в2)(а в) = 4а4в – 4а3в2 – 7а3в2 + 7а2в3
1. Сложение и вычитание многочленов
3а2(5а7в+9в2) = 3а2+5а+7в9в2
(2а в2) (3а2+4в) = 2а в2 + 3а2 4в
(5,2х у) + (3,2х 4у) = 5,2х + у +3,2х 4у = 2х 3у
(3а+в) (в 3а) = 3а+в в+3а = 0
(2х2 3у+7) (2х2+7ху9) = 2х2+3у7+2х2 7ху+9=
= 3у7ху+2
2. Умножение одночлена на многочлен
5(а в + 2с) = 5а + 5в 10с
5х2(3х+1) = 15х3 + 5х2
7х3(2х2+5) = 14х5 35х3
10а3в2(2а2в в4) = 20а5в3 10а3в6
(4в3 3в2 + 7в 10)(2в2) = 8в5 + 6в4 14в3 +20в2
3. Умножение многочлена на многочлен
(а + 5)(а 4) = а2 – 4а + 5а – 20 = а2 + а – 20
(2х 5)(2х + 5) = 4х2 + 10х – 10х – 25 = 4х2 25
(2х 5)(2х 5) = 4х2 10х – 10х + 25 = 4х2 – 20х + 25
(х2 + 1)(4 – х2) = 4х2 – х4 + 4 – х2 = 3х2 – х4 + 4
(4а3в – 7а2в2)(а в) = 4а4в – 4а3в2 – 7а3в2 + 7а2в3
1. Сложение и вычитание многочленов
3а2(5а7в+9в2) = 3а2+5а+7в9в2
(2а в2) (3а2+4в) = 2а в2 + 3а2 4в
(5,2х у) + (3,2х 4у) = 5,2х + у +3,2х 4у = 2х 3у
(3а+в) (в 3а) = 3а+в в+3а = 0
(2х2 3у+7) (2х2+7ху9) = 2х2+3у7+2х2 7ху+9=
= 3у7ху+2
2. Умножение одночлена на многочлен
5(а в + 2с) = 5а + 5в 10с
5х2(3х+1) = 15х3 + 5х2
7х3(2х2+5) = 14х5 35х3
10а3в2(2а2в в4) = 20а5в3 10а3в6 (4в3 3в2 + 7в 10)(2в2) = 8в5 + 6в4 14в3 +20в2
3. Умножение многочлена на многочлен
(а + 5)(а 4) = а2 – 4а + 5а – 20 = а2 + а – 20
(2х 5)(2х + 5) = 4х2 + 10х – 10х – 25 = 4х2 25
(2х 5)(2х 5) = 4х2 10х – 10х + 25 = 4х2 – 20х + 25
(х2 + 1)(4 – х2) = 4х2 – х4 + 4 – х2 = 3х2 – х4 + 4
(4а3в – 7а2в2)(а в) = 4а4в – 4а3в2 – 7а3в2 + 7а2в3
(4в3 3в2 + 7в 10)(2в2) = 8в5 + 6в4 14в3 +20в2
3. Умножение многочлена на многочлен
(а + 5)(а 4) = а2 – 4а + 5а – 20 = а2 + а – 20
(2х 5)(2х + 5) = 4х2 + 10х – 10х – 25 = 4х2 25
(2х 5)(2х 5) = 4х2 10х – 10х + 25 = 4х2 – 20х + 25
(х2 + 1)(4 – х2) = 4х2 – х4 + 4 – х2 = 3х2 – х4 + 4
(4а3в – 7а2в2)(а в) = 4а4в – 4а3в2 – 7а3в2 + 7а2в3
Технологическая карта и флипчарт к уроку алгебры "Действия с многочленами" (7 класс)
Технологическая карта и флипчарт к уроку алгебры "Действия с многочленами" (7 класс)
Технологическая карта и флипчарт к уроку алгебры "Действия с многочленами" (7 класс)
Технологическая карта и флипчарт к уроку алгебры "Действия с многочленами" (7 класс)
Технологическая карта и флипчарт к уроку алгебры "Действия с многочленами" (7 класс)
Технологическая карта и флипчарт к уроку алгебры "Действия с многочленами" (7 класс)
Технологическая карта и флипчарт к уроку алгебры "Действия с многочленами" (7 класс)
Технологическая карта и флипчарт к уроку алгебры "Действия с многочленами" (7 класс)
Технологическая карта и флипчарт к уроку алгебры "Действия с многочленами" (7 класс)
Технологическая карта и флипчарт к уроку алгебры "Действия с многочленами" (7 класс)
Технологическая карта и флипчарт к уроку алгебры "Действия с многочленами" (7 класс)
Технологическая карта и флипчарт к уроку алгебры "Действия с многочленами" (7 класс)
Технологическая карта и флипчарт к уроку алгебры "Действия с многочленами" (7 класс)
Технологическая карта и флипчарт к уроку алгебры "Действия с многочленами" (7 класс)
Технологическая карта и флипчарт к уроку алгебры "Действия с многочленами" (7 класс)
Технологическая карта и флипчарт к уроку алгебры "Действия с многочленами" (7 класс)
Технологическая карта и флипчарт к уроку алгебры "Действия с многочленами" (7 класс)
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.