Раздел долгосрочного плана:8.2A: Квадратные уравнения |
|
|||||||||||
Дата: |
|
|||||||||||
Класс: 8 |
Количество присутствующих: |
отсутствующих: |
||||||||||
Тема урока |
Решение
уравнений, приводимых к квадратным. |
|||||||||||
Урок №5 серии из 8 уроков |
|
|||||||||||
Тип урока |
Урок изучения нового материала |
|||||||||||
Цели обучения, которые достигаются на данном уроке (ссылка на учебную программу) |
8.2.2.7 решать уравнения, приводящиеся к виду квадратного уравнения |
|||||||||||
Цели урока |
Учащиеся знают определение биквадратного уравнения, решают биквадратные уравнения |
|||||||||||
Критерии оценивания |
|
|||||||||||
Языковые цели |
Учащиеся будут: - комментировать решение биквадратного уравнения; - оперировать предметной лексикой и терминологией данного раздела. Предметная лексика и терминология: квадратное уравнение биквадратное уравнение множество корней посторонний корень Полезные выражения для диалогов и письма: Представим левую часть уравнения в виде квадрата двучлена … Введем новую переменную Корень -4 является посторонним |
|||||||||||
Привитие ценностей |
Сотрудничество: формирование навыков сотрудничества и развитие конструктивного подхода – осуществляется через работу в группе, паре. Обучение на протяжении всей жизни:развитие таких умений и навыков, которые будут способствовать самостоятельному обучению учащихся – формируются при индивидуальной работе. |
|||||||||||
Межпредметные связи |
Прикладная математика, физика. Исследовательский подход (что я знаю, что хочу узнать, чему научился). |
|||||||||||
Навыки использования ИКТ |
Презентация в Power Point будет использована для визуализации материала. |
|||||||||||
Предварительные знания |
Учащиеся умеют решать квадратные уравнения, дробно-рациональные уравнения. Учащиеся знают и применяют формулы квадрата суммы/разности двух выражений. |
|||||||||||
Ход урока |
||||||||||||
Заплани-рованные этапы урока |
Запланированная деятельность на уроке |
Ресурсы |
||||||||||
Начало урока5 мин |
Организационный момент: учитель приветствует учащихся, проверяет готовность к уроку. Проверка домашнего задания: Учащиеся проверяют работу соседа по готовому образцу. Оценивание: Взаимооценивание, дают обратную связь: пишут комментарии в тетради по стратегии «Две звезды и одно пожелание». Мотивация учащихся: - Сегодня на уроке в совместной деятельности мы подтвердим слова Пойа. |
Слайд 1 |
||||||||||
|
1мин |
Сообщение о Дьёрде Пойа (Глобальное гражданство)
|
Слайд 2 |
||||||||||
|
5мин
|
Стадия вызова Создание проблемной ситуации: Я хочу сделать вызов вашей любознательности. Рассмотрим задание:Решите уравнения: 1) х4 + 5х2 = 126; 2) (х2 – 1)2 –18(х2 – 1) + 45 = 0.
-Можем ли мы, насладиться радостью победы и выполнить данное задание? - Как решить эти уравнения?
Учащимся предоставляется время на обдумывание идей. Затем они могут в парах обсудить их и выработать общий план решения подобных уравнений. После этого организовать общее обсуждение поставленной проблемы. Записать идеи учащихся на доске или на слайде презентации. |
Слайд 3 |
||||||||||
|
5мин |
Совместно с учащимися формулируется тема урока, цель. Сообщение этапов урока, организация обучающихся на выполнение работы. |
Слайд 4
|
||||||||||
|
Середина урока 10мин
|
Стадия осмысления Объяснение нового материала по слайдам, учащиеся основные моменты записывают в тетрадь. На данном этапе проходит обобщение идеи решения уравнений путем введения новой переменной в общем, и в частном случаее – применение метода для решения биквадратного уравнения. Также учащимся даются розъяснения по поводу приставки «би». Оформление решения биквадратного уравнения на примере уравнения предложенного в начале урока. |
Слайды 5-9
Слайд 10
|
||||||||||
|
10мин |
Закрепление нового материала 1. Решите биквадратные уравнения: 1) x4-7x2+12=0; 2) 9x4+5x2-4=0; 3) 1-4z4=0; 4) 0,1y4-1,6y2=0. Для выполнения этого задания предложить учащимся дидактическую игру «Конвейер». Каждый из четырех рядом сидящих учащихся получает карточку с биквадратным уравнением и решает его, опираясь на изученный алгоритм. По сигналу учителя ученики передают карточку соседу. Этот процксс продолжается пока каждый ученик не решит все 4 уравнения. Затем каждая группа из 4-х человек обсуждает решения.
2. Решите уравнения: а) (x-1)4-5(x-1)2+4=0; б) (x+5)4+8(x+5)2-9=0. Учитель обходит класс, предоставляя устную обратную связь. Также учащиеся могут подходить к другим одноклассникам для получения консультации. Можно предложить учащимся самостоятельно составить карточки с уравнениями.
|
Слайд 11Приложение 1Карточки с уравнениями |
||||||||||
|
5 мин |
Решение заданий на повторение ранее изученного материала 1. Один из корней уравнения 2.
Зная, что уравнение а)
б)
5 в)
|
Приложение 2 Макарычев Ю.Н., Миндюк Н.Г. Алгебра. Дидактические материалы. 8 класс: пособие для шк. с углубл. изучением математики – М.: Мнемозина, 2010. – 157 с. : ил. Страница 44. |
||||||||||
|
Конец урока 4 мин |
В конце урока учащиеся проводят рефлексию: - что узнал, чему научился; - что осталось непонятным; - над чем необходимо работать.
Домашнее задание: 1. Решите уравнения: а) б) в) 2. Составьте биквадратное уравнение, имеющее: а) 4 корня; б) 2 корня; в) не имеющее корней.
|
Слайд 12
Приложение 2 Галицкий М.Л., Гольдман А.М., Звавич Л.И. Сборник задач по алгебре, 8-9 классы. – М.:Просвещение, 2011. 301 с.:ил. Страница 123. |
||||||||||
|
Дифференциация – каким образом Вы планируете оказать больше поддержки? Какие задачи Вы планируете поставить перед более способными учащимися? |
Оценивание – как Вы планируете проверить уровень усвоения материала учащимися? |
Здоровье и соблюдение техники безопасности |
||||||||||
|
Дифференциация основана на учете индивидуальных способностей учащихся: для более продвинутых учащихся предусмотрены дополнительные задания. В начале изучения темы от них ожидаются более продвинутые, четко сформулированные идеи. Учащимся будет оказана поддержка во время закрепления материала. |
Предоставление устной обратной связи поможет учащимся в продвижении. |
Классная комната проветрена перед уроком. |
||||||||||
|
Рефлексия по уроку Были ли цели урока/цели обучения реалистичными? Все ли учащиеся достигли ЦО? Если нет, то почему? Правильно ли проведена дифференциация на уроке? Выдержаны ли были временные этапы урока? Какие отступления были от плана урока и почему? |
Используйте данный раздел для размышлений об уроке. Ответьте на самые важные вопросы о Вашем уроке из левой колонки. |
|||||||||||
|
|
||||||||||||
|
Общая оценка
Какие два аспекта урока прошли хорошо (подумайте как о преподавании, так и об обучении)? 1:
2: Что могло бы способствовать улучшению урока (подумайте как о преподавании, так и об обучении)? 1:
2: Что я выявил(а) за время урока о классе или достижениях/трудностях отдельных учеников, на что необходимо обратить внимание на последующих уроках? |
||||||||||||
Скачано с www.znanio.ru
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.