Поурочные разработки по Алгебре и началам анализа 11 класс к УМК А. Г. Мордковича - 2011 год
Вычисление площадей плоских фигур с помощью определенного интеграла - Определенный интеграл - Первообразная и интеграл
Цель: отработать навыки вычисления площадей фигур.
Ход уроков
I. Сообщение темы и цели уроков
II. Повторение и закрепление пройденного материала
1. Ответы на вопросы по домашнему заданию (разбор нерешенных задач).
2. Контроль усвоения материала (письменный опрос).
Вариант 1
1. Задача о площади криволинейной трапеции.
2. Вычислите определенный интеграл:
Вариант 2
1. Задача о перемещении точки.
2. Вычислите определенный интеграл:
III. Изучение нового материала
Так как понятие определенного интеграла в первую очередь связано с вычислением площади криволинейной трапеции, то остановимся подробнее на нахождении площадей плоских фигур. Условно можно выделить несколько характерных типов таких задач.
1. Площадь фигуры, ограниченной графиками функций f1(x) и f2(х) при условии f1(x) ≥ f2(х).
Пусть
графики функций f1(x) и f2(х) пересекаются в точках х = a
и х = b и на отрезке [а; b] выполнено неравенство f1(x) ≥ f2(х).
Тогда площадь заштрихованной фигуры, ограниченной графиками данных функций,
равна
Пример 1
Найдем площадь фигуры, ограниченной линиями у1 = √х и у2 = x2.
Построим
графики данных функций у1 = √х и у2 = x2 и
найдем точки пересечения этих графиков. Получаем уравнение: √х = х2,
или х = х4 или 0 = х(х3 - 1). Корни этого
уравнения х1 = 0 и х2= 1. На промежутке [0; 1]
выполнено неравенство y1 ≥ у2. Тогда площадь
заштрихованной фигуры равна
2. Площадь фигуры, ограниченной графиками функций f1(x) и f2(x) на отрезке [а; b].
Пусть
графики функций f1(x) и f2(х) пересекаются в точке с ∈ [a; b].
Тогда верхняя граница криволинейной трапеции представляет собой две различные
линии f1(x) и f2(х). Поэтому площадь заштрихованной
фигуры равна
Пример 2
Найдем
площадь фигуры, ограниченной линиями и
расположенной в первой четверти.
Построим
графики функций и
найдем точку пересечения. Получаем уравнение:
или
х4 = 2 - х, или (х - 1)(х3 + х2 +
х + 2) = 0. Очевидно, что такое уравнение при х ≥ 0 имеет только один
корень х = 1. Тогда площадь заштрихованной фигуры равна
3. Площадь фигуры, ограниченной графиками функций f1(x) и f2(х) различной величины на отрезке [а; b].
Фактически
этот тип задач - сочетание двух предыдущих разновидностей. Найдем площадь
криволинейной трапеции, ограниченной линиями f1(x) и f2(х)
и прямыми х = а и х = b. Пусть графики функций f1(x) и f2(х)
пересекаются в точке с ∈ [a; b]. Тогда площадь заштрихованной фигуры равна
Пример 3
Найдём
площадь фигуры, ограниченной линиями
Нарисуем
заданную фигуру и найдем точку пересечения графиков функций у1 и
у2. Получаем уравнение: или
х2 + х - 2 = 0. На промежутке [0; 2] это уравнение имеет
единственный корень х = 1. Найдем площадь заштрихованной фигуры:
4. Прочие типы задач
К этой разновидности отнесем задачи с несколько нестандартными условиями. Несмотря на это, подобные задачи решаются теми же способами. Может быть, понадобится более широкое привлечение дополнительных сведений.
Пример 4
Найдем площадь фигуры, ограниченной графиком функции f(x) = х2 + 10 и касательными к этому графику, проведенными из точки A(0; 1).
Построим
заданную фигуру. Очевидно, что такая фигура симметрична относительно оси
ординат. Поэтому достаточно найти сначала площадь половины этой фигуры. Прежде
всего получим уравнение касательной. Пусть касание происходит в точке x0.
Найдем производную f’(x) = 2х и значения функции и производной в точке x0 и
получим: Запишем
уравнение касательной:
или
Так
как касательная проходит через точку A(0; 1), то получаем уравнение
откуда
х0 = ±3. Тогда уравнение касательных у = ±6х + 1. Найдем площадь
заданной фигуры:
Пример 5
Фигура ограничена графиком функции f(x) = (х + 3)2 и прямыми x = 0 и у = 0. Под какими углами к оси абсцисс надо провести две прямые через точку А(0; 9), чтобы они разбили фигуру на три равновеликие части?
Сначала
найдем площадь криволинейной трапеции АСЕ и получим: Значит,
каждая равновеликая часть фигуры будет иметь площадь 3. Тогда
откуда
Найдем:
Площадь поэтому
откуда
Теперь
найдем:
Пример 6
Найдем наименьшее значение площади фигуры, ограниченной параболой у1 = х2 + 2х - 3 и прямой у2 = ax +1. При каком значении параметра а оно достигается?
Пусть
графики данных функций пересекаются в точках х1 и х2 (x1 <
х2). При всех х ∈ [х1; х2]
выполнено неравенство у1 ≤ у2. Тогда площадь
заданной фигуры
Точки
пересечения х1 и х2 являются корнями уравнения
х2 + 2х - 3 = ах + 1 или х2 + (2 - а)х - 4 = 0
и равны Понятно,
что подставить такие пределы интегрирования в выражение для площади S
нереально. Поэтому воспользуемся формулами Виета: х1 + х2 =
а - 2 и x1x2 = -4. Найдем необходимые для вычисления
комбинации корней:
Теперь
преобразуем выражение для площади S к более удобному виду:
Очевидно,
что наименьшее значение площадь S принимает при а = 2 и оно равно
Заметим, что применение определенных интегралов намного разнообразнее. В математике они могут быть использованы для вычисления объемов тел (пирамида, конус и т. д.), в том числе и объемов тел вращения; длин дуг кривых; площадей поверхностей тел вращения и т. д. В физике определенные интегралы используются для вычисления работы переменной силы, центра масс, энергии тела и т. д.
IV. Задание на уроках
§ 49, № 11 (б); 14 (а, б); 17 (б); 19 (а, б); 23 (в, г); 25 (а); 26 (в, г); 27 (а); 28 (б); 29 (а); 31 (а); 32 (в, г); 33 (а); 34 (б).
V. Задание на дом
§ 49, № 11 (г); 14 (в, г); 17 (а); 19 (в, г); 23 (а, б); 25 (б); 26 (а, б); 27 (б); 28 (а); 29 (б); 31 (б); 32 (а, б); 33 (б); 34 (а).
VI. Творческие задания
1. При каких значениях параметра а выполнено условие:
Ответы: а) 1 и 9; б) 7/4; в) (1; 9); г) (-∞; 0] U {1}; д) 3. 4
2. Вычислите площадь фигуры, ограниченной линиями:
Ответы: а, б) 4.
3. Найдите площадь фигуры, заданной неравенством:
Ответы: а) 5/6; б) 2π + 4; в) 4/3; г) 4π + 8.
4. Найдите площадь фигуры, ограниченной кривой у = х2 + х + 1, касательной к ней, проведенной в точке A(1; 3), и прямой х = -1.
Ответ: 7/6.
5. Вычислите площадь фигуры, ограниченной параболой у = х2 - 2х + 2, касательной к ней в точке A(3; 5) и осью ординат.
Ответ: 9.
6.
Найдите площадь фигуры, ограниченной кривой и
прямой, проходящей через точки А(2; 2) и B(4; 3).
Ответ: 2/3.
7.
Найдите площадь фигуры, ограниченной кривой и
прямой, проходящей через точки A(1; 1) и B(-5; 3).
Ответ: 1/6.
8. Вычислите интеграл, используя его геометрический смысл:
Ответы: а) 3/2; б) 3; в) 18 - 4,5π; г) 12 + 2π.
VII. Подведение итогов уроков
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.