Информатика. Урок 8 класс. Перевод чисел в различные системы счисления
Оценка 4.6
Разработки уроков
docx
информатика
8 кл
08.05.2018
Информатика. Урок 8 класс. Перевод чисел в различные системы счисления. Урок изучения нового материала. Знакомство с позиционными и непозиционными системами счисления. Правила перевода. перевод дробных чисел в двоичную, восьмиричную и шестнадцатиричную системы счисления. Отработка практических навыков. Преимущества и недостатки различных систем счисления.
Тема Перевод чисел из одной системы счисления в другую.docx
Тема: Перевод чисел из одной системы счисления в другую.
Предмет: информатика.
Класс: 8 класс
Цель урока: сформировать у учащихся навыки и умения переводить числа из одной системы
в другую.
Задачи урока:
учащиеся вспомнят целочисленное деление;
учащиеся узнают правила перевода чисел из одной системы счисления в другую;
учащиеся научатся переводить числа из десятичной системы счисления в любую
другую;
учащиеся научатся переводить числа из двоичной системы счисления в систему
счисления с основанием 2n и обратно.
учащиеся будут развивать социальнокоммуникативную компетентность.
Форма работы: индивидуальная, групповая.
Программнодидактическое обеспечение урока : ПК, программа Калькулятор.
1. Постановка целей урока
2. Фронтальный опрос
3. Изложение нового материала
4. Закрепление изученного
5. Рефлексия
6. Подведение итогов
План урока.
Ход урока.
1. Постановка целей урока
1. Сколько лет каждому из вас в шестнадцатеричной системе счисления?
2. «10», «100», «101», «110». Такой бы была шкала оценок в школе в двоичной
системе счисления.
Давайте мы с Вами вспомним, что знаем по разделу «Системы счисления»
2. Фронтальный опрос учащихся.
ВОПРОСЫ:
1. Что называют системой счисления?
Системой счисления называется совокупность символов (цифр) и правил их
использования для представления чисел.
2. Какие виды систем счисления вы знаете?
Позиционные и непозиционные системы счисления.
3. Приведите примеры непозиционной системы счисления
Римская система в которой в качестве цифр используются некоторые буквы:
I(1), V(5), X(10), L(50), C(100), D(500), M(1000).
4. А почему она считается непозиционной системой счисления?
1 В системе значение цифры не зависит от ее положения в числе. Например, в
числе ХХХ цифра Х встречается трижды, а в каждом случае обозначает
одну и туже величину 10, а в сумме ХХХ это 30.
5. Какая система называется позиционной?
В позиционной системе счисления количественное значение цифры зависит
от ее позиции в числе. Позиция цифры называется РАЗРЯДОМ. Размер
числа возрастает с права на лево .
Наиболее распространенной в настоящее время являются :
десятичная, двоичная , восьмеричная и шестнадцатеричная .
6. Что называться основанием в позиционной системе счисления?
В позиционной системе счисления основание системы равно количеству
цифр, используемых ею, и определяет, во сколько раз различаются значения
цифр соседних разрядов чисел.
7. Как можно записать число в позиционной системе счисления?
Любое число в позиционной системе счисления с произвольным основанием
можно записать в виде многочлена
А(s)=ansn+ an1sn1+ …+ amsm , где s основание системы, а степень
соответствует разряду цифры а в числе А(s)
Например: 34510=3∙ 102+4∙ 101+ 5∙10 0
8. Какие примеры вы можете привести позиционной системы счисления?
Например:
1010102 двоичная (основание 2, используются две цифры –0,1)
34510 – десятичная ( основание 10, используются десять цифр –
0…9)
7468 – восьмеричная (основание 8, используются 8 цифр – 0…7)
9. Как можно перевести любое число в десятичную систему счисления?
Нужно воспользоваться многочленом
А(s)=ansn+ an1sn1+ …+ amsm
Например:
4 3 2 1 0
10111=1∙24+0∙23+1∙22+1∙21+1∙20= 16+4+2+1=2310
2 1 0
2213= 2∙32+2∙31+ 1∙30=2∙9+2∙3+1=18+6+1=2510
10. Как можно перевести дробную часть числа из десятичной системы счисления в 2ую,
8ую, 16ую системы счисления?
Нужно умножать дробную часть числа и полученные при выполнении
умножения целые части записывать. Как только начинается повтор цифр в
целой части числа, умножение можно не выполнять.
11.В чем же преимущество у шестнадцатеричной системы счисления в отличии от
других?
Недостаток двоичной системы счисления в том, что для записи даже
2 небольших чисел приходится использовать много знаков, так как основание
мало. Поэтому в современных компьютерах помимо двоичной системы
счисления применяются и другие, более компактные по длине чисел
системы. Такими являются шестнадцатеричная и восьмеричная системы
счисления.
3. Изложение нового материала
Для записи любой цифры восьмиричного необходимы тир двоичные цифры (триады).
Поэтому преобразуемое двоичное число разделяют справа налево на группы по три
двоичных цифры, при этом самая левая группа может содержать меньше трёх двоичных
цифр. Например, двоичная цифра 011 есть цифра три в восьмеричной системе счисления.
Затем каждую группу двоичных цифр выражают в виде восьмеричной цифры,
представленной в таблице:
Двоичная система
Восьмеричная система
000
001
010
011
100
101
110
111
0
1
2
3
4
5
6
7
Например, двоичное число 1101111011, разбитое на группы по три двоичные цифры, можно
записать как 1 101 111 011 и затем после записи каждой группы одной восьмеричной
цифрой получить восьмеричное число 1573.
Аналогично преобразуется двоичное число в шестнадцатеричную систему счисления.
Преобразуемое двоичное число делят на группы по четыре двоичных цифры в каждой
(тетрады), поскольку для записи любой цифры шестнадцатиричного числа необходимы
четыре двоичных цифры.
Десятичная система
Шестнадцатеричная система
Двоичная система
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
Поэтому двоичное число 1101111011, использованное в предыдущем примере, после
разбиения на группы по четыре двоичных цифры, можно записать 11 0111 1011 и после
выражения каждой группы одной шестнадцатеричной цифрой получить шестнадцатеричное
число 37В.
3 Например:
1 111 101 001 2= 011 111 101 0012= 37548
11 1110 10012= 0011 1110 10012 = 3Е916
Выполним несколько заданий. Делим доску пополам, выходит два ученика, первая
половина доски перевод в 8ую, вторая половина доски – в 16ую системы счисления.
Задание. Переведите двоичные числа в восьмеричную систему счисления и
шестнадцатеричную.
а) 11110110011
г) 11011111011
б) 1101101001001
д) 1010111011101
в) 1001101011001
е) 1110111101011
Перевод чисел из восьмеричной и шестнадцатеричной систем счисления
в двоичную.
Преобразование восьмиричного или шестнадцатеричного числа в двоичное осуществляется
простым переводом каждой цифры исходного числа в группу из трёх (триад – для
восьмеричного) или из четырёх (тетрад – для шестнадцатеричного числа) двоичных цифр.
Например, 1238 = 001 010 0112
А1716 = 1010 0001 01112
Если после перевода целая часть двоичного числа начинается с нулей, то их
отбрасывают. То же самое делают с нулями в конце дробной части.
Задания.
1. Перевести восьмеричные числа в двоичную систему счисления с помощью таблицы:
а) 3248 б) 15768
2. Перевести шестнадцатеричные числа в двоичную систему счисления с помощью
г) 206,1258
в) 37,258
таблицы:
а) А5916
б) 8716
в) 2СЕ16
г) 1F5A16
4. Закрепление изученного.
Решим самостоятельно задачи. Раздаются карточки с заданиями по вариантам.
№1
Переведите двоичные числа:
а) 101011011; 1111110011; 100000001110 в восьмеричную систему счисления
Ответ: 533, 1763, 4016.
б) 11110111011; 101010101; 111111 в шестнадцатеричную систему счисления
Ответ: 7ВВ, 155, 3 F.
№2
Переведите двоичные числа:
а) 111011011; 000110101; 0101010111 в восьмеричную систему счисления
Ответ: 733, 065, 527.
4 б) 00110011; 11100011101; 011011011 в шестнадцатеричную систему счисления
Ответ: 33, 71D, DВ.
Когда все учащиеся выполнят работы, учитель диктует ответы и дети сами проверяют,
ставят оценки по критериям: две ошибки – оценка «пять», четыре ошибки – оценка
«четыре», больше ошибок оценка «три».
Оценки выставляются в журнал.
5. Рефлексия.
Творческое задание.
Задание. Постройте в координатной плоскости заданную фигуру по плану, предварительно
осуществите перевод координат точек из двоичной системы счисления в десятичную.
1) Постройте окружность с центром в точке (1010, 1010), с радиусом 101;
2) Постройте точки и соедините их с отрезками, закрасьте соответствующим цветом.
Синий (11; 111), (100; 1000), (101; 111), (100;110)
Синий (111; 111), (1000, 1000), (1001; 111), (1000; 110)
Красный (100; 100), (110; 11), (1000; 100)
Ответ: улыбающийся человечек, который получился в результате творческого
задания, подтверждение тому, что вы хорошо поработали на уроке.
6. Подведение итогов. Учащиеся записывают домашнее задание.
Заполните магический квадрат цифрами в десятичной системе счисления
1) 10002
6) 01112
2) 00012
7) 01002
5) 01012
3) 01102
8) 10012
4) 00112
9) 00102
1
4
7
2
5
8
3
6
9
5
Информатика. Урок 8 класс. Перевод чисел в различные системы счисления
Информатика. Урок 8 класс. Перевод чисел в различные системы счисления
Информатика. Урок 8 класс. Перевод чисел в различные системы счисления
Информатика. Урок 8 класс. Перевод чисел в различные системы счисления
Информатика. Урок 8 класс. Перевод чисел в различные системы счисления
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.