Конспект урока по теме "Решение линейных неравенств" по учебнику Мордкович А.Г
Оценка 4.9

Конспект урока по теме "Решение линейных неравенств" по учебнику Мордкович А.Г

Оценка 4.9
Разработки уроков
docx
математика
8 кл
18.05.2018
Конспект урока по теме "Решение линейных неравенств" по учебнику Мордкович А.Г
Данная разработка предназначена для урока коррекции знаний. Представлена разноуровневая самостоятельная работа. Образовательные результаты, на достижение которых направлено содержание урока: личностные: формирование навыков организации и анализа своей деятельности; метапредметные: коммуникативные: проявлять готовность адекватно реагировать на нужды одноклассников, оказывать помощь и эмоциональную поддержку одноклассникам; регулятивные: вносить коррективы и дополнения в составленные планы; познавательные: создавать структуру взаимосвязей смысловых единиц текста; предметные: понятия: равносильные неравенства, равносильные преобразования неравенств; решать линейные неравенства.Конспект урока по теме "Решение линейных неравенств" по учебнику Мордкович А.Г. Данная разработка предназначена для урока коррекции знаний. Представлена разноуровневая самостоятельная работа.
algebra._9_klass._dlya_massovoi_shkoly_8_klass._reshenie_lineinyh_neravenstv._mordkovich_a.g.docx
«РЕШЕНИЕ ЛИНЕЙНЫХ НЕРАВЕНСТВ». (Учебник: Мордкович А.Г. Алгебра. 8 класс.) Цель   урока.  Знать   свойства  числовых   неравенств.   Отрабатывать решение линейных неравенств Развивающие задачи. Развитие предметной речи. Обучающие   задачи.  Коррекция   знаний,   уметь   самостоятельно решать линейные неравенства. Воспитательные задачи. Трудовое воспитание. Образовательные   результаты,   на   достижение   которых направлено содержание урока: – – – – – – личностные: формирование навыков организации и анализа своей деятельности; метапредметные: коммуникативные:   проявлять   готовность   адекватно реагировать на нужды одноклассников, оказывать помощь и эмоциональную поддержку одноклассникам; регулятивные:   вносить   коррективы   и   дополнения   в составленные планы; познавательные: смысловых единиц текста; предметные:   равносильные   неравенства,   понятия: равносильные преобразования неравенств; решать линейные неравенства.   создавать   структуру   взаимосвязей Тип урока: урок коррекции знаний. Формы работы: фронтальная, индивидуальная, групповая. Ход урока. 1. Организационный момент. 1 Проверка   готовности   к   уроку,   приветствие,   обеспечение эмоционального настроя учащихся, а также добиваться симпатии, позволяющей чувствовать переживания обучающихся. 2. Проверка домашнего задания. Ответы на вопросы по домашнему заданию. Выполнить работу над ошибками. 3.  Постановка цели. Учитель сообщает цель урока. 4. Устная работа. 1.   Какое   неравенство   называют   линейным   неравенством   с   одним неизвестным? Приведите пример. 2. Какие неравенства называют равносильными? 3. Можно ли указать, если можно, то укажите: а) наименьшее решение неравенства  x>0 ; б) наибольшее решение неравенства  x<−2 ; в) наименьшее целое решение неравенства  x>−5 ; г) наибольшее целое решение неравенства  x<1 ? 4. Какое из чисел  –1;7;√5;3 7  является решением неравенства  3x>x+2  ? 5. Смотреть приложение (презентация к уроку), слайд 2 и слайд 3. № 1. Является ли решением неравенства  8x−12>3x+5  число а)  −3  ; б)  3  ; в)  0  ; г)  5  ? (Ответ.  5  .) №   2.   Назовите   два   наименьших   целых   решения   неравенства 15x+16>11x  . (Ответ.  −3;−2  .) №   3.   Найдите   наименьшее   целое   число,   при   котором   двучлен 12x+36  принимает положительные значения. (Ответ.  −2  .) №   4.   Назовите   два   наибольших   целых   решения   неравенства −8x≥40  . (Ответ.  −5;−4  .) №   5.   Найдите   количество   целых   положительных   решений неравенства  5x−3≤27  . (Ответ. 6.) 2 −5 И −4 О −3 А −2 Р −1 В 0 Д 1 Б 2 Л 3 Е 4 С 5 Г 6 Т x Букв а С   помощью   таблицы   составьте   слово.   Слово   –   фамилия английского астронома, математика, этнографа и переводчика.  Смотреть   приложение   (презентация   к   уроку),   слайд   4   и слайд 5. Гарриот. Томас Гарриот (1560 – 1621) был воспитанником Оксфордского университета и первым алгебраистом  XVII  века. Он усовершенствовал алгебраическую символику, придумал для отношений «больше», «меньше» знак неравенства   ¿   (больше) и ¿   (меньше). До этого  только  использовали слова  «больше» и «меньше». Он обосновал своё нововведение таким образом: если две величины не равны, то отрезки, фигурирующие в соотношении не параллельны, а пересекаются. Пересечение может быть справа ( ¿ ) , а может быть слева ( ¿ ). Его главный труд, где впервые были применены эти знаки, был издан посмертно в 1631 году. В   1734   году   французский   физик   и   астроном   Пьер   Бугер (1698 – 1758) ввёл знаки «не больше» и «не меньше», которые позже приняли привычные очертания  ≤   ,   ≥   , (он предложил знак «не больше», т.е. «меньше или равно», в виде знака  ¿  , а под нижней наклонной чёрточкой располагался знак «равенства»  ¿ , аналогично – со знаком «не меньше». 5. Письменная работа. Один   ученик   со   слабыми   знаниями   по   математике выполняет   работу   на   доске.   А   остальные   выполняют   на листах с напечатанной основой, которые раздаются каждому учащемуся.  На   данных   листах   используется   специальный шрифт для слабовидящих «Arial», а также номер шрифта, 3 который   подбирается   индивидуально   к   каждому обучающемуся, для лучшего восприятия задания. Учитель подходит к каждому учащемуся и проверяет работы. Для   учащихся   со   слабыми   знаниями   предлагается следующая работа: № 1. Решите неравенство и изобразите множество его решений на координатной прямой: 5(x+2)≥4  . №   2.   При   каких   значениях   a   двучлен   5a−3 принимает положительные значения? Для   учащихся   со   средними   или   сильными   знаниями предлагается следующая работа: Решите неравенство: № 1.  2(3−2b)+3(2−b)≤40  . № 2.  4(a+1)+3a>7a+2  . № 3.  9d 5 <4  . 6. Физкультминутка, гимнастика для глаз. 7. Устная работа. Повторение свойств числовых неравенств. Верно ли, что: а¿x2y≥0,тоy≥0;б¿еслиx y2 ≥0,тоx≥0; в¿еслиxy2<0,тоx<0;г¿еслиx2 y ≥0,тоx>0? 8. Разноуровневая самостоятельная работа. Учащиеся   осуществляют   на   листах   с   напечатанной   основой, где   используется   специальный   шрифт   для   слабовидящих «Arial», с подобранным индивидуально номером шрифта. 4 Смотреть   приложение   (презентация   к   уроку),   слайд   6   и слайд 7. Для   учащихся   со   слабыми   знаниями   предлагается следующая работа. I вариант. № 1. Решите неравенства: а)  4x>12  ; б)  –x>11  ; в)  −x<0,3  ; г)  −4x≤24  ; д)  16x≤−0,32  . Примечание. При решении неравенств учитывайте, каким является числовой коэффициент при  x , положительным или отрицательным числом. № 2. Решите неравенства: а)  13d≤11d+7  ; б)  4−b≥3+7b  . Примечание. Чтобы решить неравенства, нужно 1) 2) 3) перенести   члены,   которые   содержат   переменную   в левую   часть,   а   свободные   члены   в   правую   часть неравенства; привести   подобные   члены   в   каждой   части неравенства; разделить обе части неравенства на коэффициент при x , сохранить при этом знак неравенства, если этот коэффициент   является   числом   положительным,   и поменять  знак  неравенства,  если  этот   коэффициент является отрицательным числом. Для учащихся со средними или сильными знаниями. II вариант. № 1. Найдите множество решений неравенства   12x−1<8+10x . И определите, будет ли принадлежать этому множеству число: а)  4,3  ; б)  ; в)  √8  ; г)  √2+√5  . ( 2 3)−1 №   2.   При   каких   значениях   переменной   произведение   выражений 3x+8   и   x+12   больше   утроенного   квадрата   второго множителя? 5 № 3. При каких значениях   d , уравнение   3d+5x=2−3,5x   имеет отрицательный корень (т.е. значение переменной величины  x является отрицательной величиной) ? Самостоятельную работу учащиеся сдают учителю на проверку. 9. Итог урока. Найдите наименьшее целое решение неравенства: 7(x+2)−3(x−8)>10  . 10. Домашнее задание. Предложить ученикам со слабыми знаниями: № 33.8(а); № 33.10(б); № 33.18(в). Предложить ученикам со средними и сильными знаниями: № 33.18(в); № 33.19(г); № 33.26(б); № 33.29(а). 11. Рефлексия. Учитель: закончите предложение: 1) на этом уроке узнали… 2) на этом уроке выполняли… 3) было сложно… 4) хотелось бы… 12. Выставление оценок. СПАСИБО ЗА УРОК! 6

Конспект урока по теме "Решение линейных неравенств" по учебнику Мордкович А.Г

Конспект урока по теме "Решение линейных неравенств" по учебнику Мордкович А.Г

Конспект урока по теме "Решение линейных неравенств" по учебнику Мордкович А.Г

Конспект урока по теме "Решение линейных неравенств" по учебнику Мордкович А.Г

Конспект урока по теме "Решение линейных неравенств" по учебнику Мордкович А.Г

Конспект урока по теме "Решение линейных неравенств" по учебнику Мордкович А.Г

Конспект урока по теме "Решение линейных неравенств" по учебнику Мордкович А.Г

Конспект урока по теме "Решение линейных неравенств" по учебнику Мордкович А.Г

Конспект урока по теме "Решение линейных неравенств" по учебнику Мордкович А.Г

Конспект урока по теме "Решение линейных неравенств" по учебнику Мордкович А.Г

Конспект урока по теме "Решение линейных неравенств" по учебнику Мордкович А.Г

Конспект урока по теме "Решение линейных неравенств" по учебнику Мордкович А.Г
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
18.05.2018