Посторонние и потерянные корни.
Комплекс уравнений,
при решении которых выполняются тождественные преобразования, приводящие к появлению посторонних корней или их потере.
Рассмотрим несколько конкретных примеров, где некоторые преобразования уравнений приводят к новым уравнениям, неравносильным данному, что ведёт к появлению посторонних корней или их потере.
Пример 1.
Дано уравнение 3х(х – 1) = 5(х – 1).
1 способ решения:
Раскроем скобки в данном уравнении, перенесём все члены в левую часть и решим квадратное уравнение.
3х² - 8х + 5 = 0
Корни уравнения х = 1, х= .
2 способ решения:
Сократить обе части уравнения на общий множитель (х – 1), то получится уравнение
3х = 5, которое имеет всего лишь один корень х = .
Таким образом, деление обеих частей уравнения на множитель, содержащий неизвестное, может привести к потере корней.
Пример 2.
Дано уравнение 2х -3 = 5 .
Данное уравнение имеет единственный корень х = 4.
Возведём обе части этого уравнения в квадрат, получим (2х – 3)² = 25.
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.